If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-0.8t^2+3.2t+6=0
a = -0.8; b = 3.2; c = +6;
Δ = b2-4ac
Δ = 3.22-4·(-0.8)·6
Δ = 29.44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3.2)-\sqrt{29.44}}{2*-0.8}=\frac{-3.2-\sqrt{29.44}}{-1.6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3.2)+\sqrt{29.44}}{2*-0.8}=\frac{-3.2+\sqrt{29.44}}{-1.6} $
| 12=7x–5x | | 24=-3(d+4) | | x^2+6x+142=0 | | 15−0.50m=25−0.25m15+0.50m=25+0.25m15m+0.50=25m+0.2515m−0.50=25m−0.25 | | 33^t-14^t=0 | | 6=10+r2 | | b/17-3b=14/17 | | -5(4+q)=-45 | | -0.8t^2+3.2t+8=6 | | 33^t=14^t | | -6(x+2)=7-5x | | 30=-5(9+b)+20 | | 33^t=14t | | (1.5+2x)1.15=11.50 | | (3x+3)/2=19-(5x+5)/3 | | 3(2-x)=-2(x+5) | | 2(3m+4m)=28 | | 2(z-23)+4(z-3)=50 | | 2(3m+4m=28 | | 5g+2(5+4g)=1-g | | 4(z-1)=6(z+1) | | 7x=9=3*2 | | 3/2x+5/2=1/2 | | 2.9+10m=8.45 | | 8(m+1)=5(m+2) | | 20^2+b^2=25^2 | | 5t-2=2t+28 | | -3+x=-7+2x | | m(-7)=2.1 | | 4(6x+9)=156 | | 9-3x/2=5 | | 4m+1=5m+7 |